# **GHG Emission Reduction Record**

Artists for Humanity Boston, Massachusetts, U.S.A. October 1, 2004 – September 30, 2005

> Created March 2006 by **ICBE** Gainesville, Florida, U.S.A.







Photo by: Richard Mandelkorn

# **Summary**

In April 2005, Artists for Humanity—a non-profit educational group in Boston, MA—commissioned ICBE to create a greenhouse gas (GHG) reduction record based on the energy performance characteristics of their main building located at 100 West Second Street in South Boston's Waterfront.

The 23,500 square foot structure—named EpiCenter—is a high-performance, industrial-style, glass and steel building, incorporating a variety of sustainable designs, such as walls that provide passive heating and cooling, super insulation, maximum utilization of daylight, and a 48 kW DC rooftop photovoltaic array. Construction was completed in the summer of 2004, and Artists moved in September 2004.

Based on utility records for gas, electricity and water consumption, the study found that during Year One of occupancy, EpiCenter consumed about half the electricity and natural gas compared to a group of comparable buildings, and in spite of various water conserving features, consumed nearly three times the baseline amount of water. The reduction in gas and electricity consumption resulted in nearly 50 tCO2 savings.

# **Method of Analysis**

To create the GHG record, a comparison was drawn between the target building on 100 West Second Street and a pool of similar conventional buildings in the same geographic area. The study's original aim was to create a baseline of thirty buildings located in the Boston area with comparable size and occupational patterns. To accomplish this, the Boston Department of Neighborhood Development (DND) created a master list of the 325 commercial buildings that occupy between ten thousand and forty thousand square feet (sf) from the city's Tax Records. This list was then screened for owners who had local Boston addresses, and who appeared, purely from the impression of owner names, easily approachable in case direct contact was necessary. Buildings owned by Hertz Corporation and XYZ Realty in NY were thus eliminated. Without any further qualification, the working list was reduced to ten buildings larger than thirty thousand sf; ten buildings smaller than twenty thousand sf; and ten buildings with exactly or nearly exactly 23,500 sf.

Due to a variety of issues, in only a limited number of instances were the water, electric, and gas records easily available for the selection of thirty addresses, so the sample pool grew smaller. In addition, upon examination of the water records, it became clear that a number of addresses were occasionally unoccupied and were therefore dropped from the list. Collecting utility records using a given specific address was not always successful. A single location can exist under various aliases in different database systems because: the location is large enough to have multiple adresses; the building was once several buildings reconstructed into a single building; or the billing address is different from the address of the service location. After consultation with contact persons at the various utilities, it was also determined that several buildings (especially in the old Boston downtown) which had been fitted with piping, conduits and points of telemetry when services were first introduced, were deemed to have service footprints

inconsistent with the square footage listed in their tax profiles. Thus, as the original list of thirty was not a useful baseline for comparison, it was discarded, and a new approach was devised.

Based on the experiences gained during the first approach, the working list was reassessed using *Google Earth*'s high resolution Boston search feature. One by one, addresses were pulled up, eliminating: buildings in or close to downtown; buildings attached to other buildings; buildings with fewer than two stories; and buildings with multiple tenants in which the taxable square footage was not equal to the buildings' physical square footage. The first ten buildings surviving these criteria became the new baseline group, which was resubmitted to the relevant utilities. The search returned six electric records, four of which showed gas use. Of the same six electric addresses, three water records were returned. The water records were made available in cubic feet per month; natural gas records in one hundred cubic feet per month; and due to privacy issues, electric data was restricted to demand in kilo watt, as opposed to the more desirable consumption figures in kilo watt hours. All the data were reduced to consumption per square foot, with special attention paid to differences in winter and summer patterns.

The new baseline group showed consistent consumption results when viewed annually and when broken down in summer and winter blocks. As anticipated, addresses served by gas and electric showed high use of gas and lower use of electric in the winter due to heating needs, and the reverse in the summer because of cooling needs. The baseline group used about three times more gas in the winter than in the summer; whereas the winter upswing in gas use in the target building was more tempered, likely due to passive warming and effective insulation characteristics. When the number of baseline buildings was reduced to the four that use gas for heating, the winter electric consumption on a per square foot basis was very similar to each other and to the target building. Summer electric consumption, on the other hand, was less by about two-thirds, due to EpiCenter's alternative cooling techniques.

### **GHG Factors**

**Electricity** - emission rates associated with kWh consumption from the U.S. Environmental Protection Agency's (EPA) Emissions & Generation Resource Database (eGRID) were applied and reflect the emissions generated in the power control area (PCA) of the baseline and target buildings' locations. The database lags a few years in publication, and for CY 2005, year 2000 emission rates were applied. No discounting was factored in to account for distribution and transmission losses, which nominally stand at a bit over 10% for the New England ISO.

**Natural Gas** - emission values for Natural Gas were sourced from Argonne National Laboratories' Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model, commonly known as GREET. The values applied reflect the consumption of the fuel itself, not the energies expended during recovery, processing, and transportation.

**Water** - emission rates associated with water consumption were not factored in, but an attempt to estimate those will be made during further refinement of the baseline in Year Two.

### Conclusion

To attain a higher level of confidence in assessing the true greenhouse gas reduction aspect of the target building at 100 West Second Street, the baseline needs to be refined. Though results found to date are generally consistent with expectations expressed in documentation of the architects and in paperwork generated for the LEED Certification for Sustainable Design at the Platinum Level, the lower than desired number of qualified comparable buildings in the baseline pool, along with a lack of updated readings of the grid-related emissions factors prevailing in CY2005, forces the greenhouse gas reduction profile to build in a 20% probability of error.

Additionally, building occupants require a few seasons to become fully accustomed to the workings of their building, to optimize the various systems available to them, and to settle into a management routine. Therefore, Year Two and Year Three may be much more representative of the long term energy consumption and the resulting emissions trend.

ICBE will address these issues in collaboration with the various utilities in preparation for Year Two of the GHG Emissions Reduction Record. The greenhouse gas emissions profile for EpiCenter, which we can calculate with certainty, as opposed to its greenhouse gas *reduction* profile which needs more definition, comes in at about 35% less then the national average. This is due to the high presence of hydro, biomass and nuclear resources in New England's electric generation resource mix. It also shows that the given parameters of energy consumption per square foot, solar availability, and grid carbon intenstity—the design and systems employed in EpiCenter—in similar climatic conditions elsewhere in the U.S., could lead to around 800 tCO2 reductions per decade, or roughly 4000 tCO2 over the 50 year design life of the building.

For ICBE: Mark van Soestbergen

March 3, 2006 Gainesville, Florida, U.S.A

( Mw ) 33

# Acknowledgements/References

This report was made possible through the contribution of many hours, phone calls, data sets, emails, anecdotes and corrections of individuals directly and peripherally involved in the EpiCenter project. Below is a short list of the people who volunteered knowledge, help and guidance necessary in assessing the various building related processes.

Artists for Humanity, for proposing this groundbreaking study.

Robert Gehret, <u>bgehret.dnd@ci.boston.ma.us</u>
Joshua Farmer, <u>farmerj@bwsc.org</u>
Margie Sweeney, <u>msweeney@keyspanenergy.com</u>
Joanna Brown, <u>Joanna\_brown@nstaronline.com</u>
Patricia Cornelison, <u>cornelison@arrowstreet.com</u>

### References

Kelley, Mark E., Cornelison, Patricia. 2005. Artists for Humanity Epicenter: A Successful Model for the Sustainable Design Process. *Orlando: 2005 Solar World Congress* 

Born, Kathleen. 2004. Artists for Humanity EpiCenter Opens in South Boston

United States Green Building Council. 2005. *LEED Certified Project Case Study*. Artists for Humanity EpiCenter. Washington: www.usgbc.org

# **Key figures**





Total project cost: \$4,900,000 Cost per square foot: \$208 Grid emission rate: 407 kg CO2 per MWh Grid emissions: 51,864,054 tCO2/yr

# Accreditation formula for a Boston, Massachusetts, LEED certified Industrial / Educational building, using New England PCA as a baseline. October, 2004 ~ September, 2005, applying known electric and natural gas values. Style: Emissions Avoidance

Technically, these types of reductions are named Emission Avoidance Units or EAU's. They are characterized by the fact that they advertently influence the load and emissions results

| I echnically, these types of reductions a                                                                      | are named Emission | Avoidance                  | is of EAU's. They a  | re characterized by | the ract that un | The solution of the state of the solution of t | the load and emiss     | Sions results |                 | ()      |
|----------------------------------------------------------------------------------------------------------------|--------------------|----------------------------|----------------------|---------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------|-----------------|---------|
| National emissions per kWh                                                                                     | <u>Wh</u>          | CO2 (kg)                   | NOX (kg)             | SO2 (kg)            | CO (kg)          | CO (kg) NMVOC'S (kg) CH4 (kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | N2O (kg)      | SF6 (kg)        | HG (kg) |
|                                                                                                                | 1                  | 0.63151                    | 0.00135              | 0.00274             | 0.00015          | 0.00002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00001                | 0.00001       | 0.00000         | 0.00000 |
| of the utility products that the project would have otherwise had to rely on under conventional circumstances. | would have         | e otherwise had to rely or | n under conventional | circumstances.      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                 |         |
| NE ISO emissions per kWh                                                                                       | Wh                 | CO2 (kg)                   | NOX (kg)             | SO2 (kg)            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                 | HG (kg) |
|                                                                                                                | 1                  | 0.40692                    | 0.00068              | 0.00171             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                 | 0.00000 |
| NE PCA baseline kWh                                                                                            | ı                  | CO2(kg)                    | NOX (kg)             | SO2 (kg)            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                 | HG (kg) |
|                                                                                                                | 86,466             | 35,185                     | 58.83                | 148.25              |                  | kWh 53.94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.85                   |               |                 | 0.00038 |
| NE baseline CCF                                                                                                |                    |                            |                      |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                 |         |
| 1(                                                                                                             | 10,260             | 57,069                     |                      |                     |                  | NG 43.86%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.28                   |               |                 |         |
| National kWh                                                                                                   |                    | CO2 (kg)                   | NOX (kg)             | SO2 (kg)            | CO (kg)          | CO (kg) NMVOC'S (kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CH4 (kg)               | N2O (kg)      | SF6 (kg)        | HG (kg) |
| 98                                                                                                             | 86,466             | 54,604                     | 116.37               | 237.05              | 237.05 12.969967 | 1.729328884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.8646644              | 0.86466444    | 0.0475565       | 0.00000 |
| kWh from grid                                                                                                  | 46,640             | CO2 (kg)<br>18,979         | 31.73                | 79.97               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                 | 0.00021 |
|                                                                                                                |                    |                            |                      |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                 |         |
| kWh from PV                                                                                                    |                    |                            |                      |                     | Quick shee       | Quick sheet for U.S. National Average 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nal Average            |               |                 |         |
| 48                                                                                                             | 48,685             | 0                          |                      |                     | grams/lbs        | lbs/MWhg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lbs/MWh grams/kWh      |               | Emission        |         |
| NG in CCF                                                                                                      |                    | $CO2$ $(k\alpha)$          |                      |                     | 453.59237        | 1,392.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 631.50853<br>2 7415123 |               | 20 5<br>20 3    |         |
|                                                                                                                | 4,500              | 25,031                     |                      |                     |                  | 2.967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.3458086              | . ~           | NOx             |         |
|                                                                                                                |                    |                            |                      |                     |                  | 0.0263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.193E-05              |               | Hg              |         |
| Residual oil in gals                                                                                           |                    | CO2 (kg)                   |                      |                     | ottp://wwv       | http://www.epa.gov/airmarkets/egrid/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ets/egrid/             |               |                 |         |
|                                                                                                                | 0                  | 0                          |                      |                     | nttp://bioe      | http://bioenergy.ornl.gov/papers/misc/energy_conv.html                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tpers/misc/er          | nergy conv.h  | <u>ıtml</u>     |         |
| LPG in gals                                                                                                    |                    | CO2 (kg)                   |                      |                     | Quick shee       | Quick sheet for New England ISO and PCA 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and ISO and            | PCA 2000      |                 |         |
|                                                                                                                | 0                  | 0                          |                      |                     | grams/lbs        | lbs/MWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lbs/MWh grams/kWh      | I             | Emission        |         |
|                                                                                                                |                    |                            |                      |                     | 453.59237        | 897.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 406.92225              | Ŭ             | CO <sub>2</sub> |         |
| Gasoline in gals                                                                                               |                    | CO2 (kg)                   |                      |                     |                  | 3.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.7145792              |               | SO <sub>2</sub> |         |
|                                                                                                                | 0                  | 0                          |                      |                     |                  | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.6803886              | _             | NOx             |         |
|                                                                                                                |                    |                            |                      |                     |                  | 0.0097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.4E-06                |               | Hg              |         |
| Diesel in gals                                                                                                 |                    | CO2 (kg)                   |                      |                     | NStar is ar      | NStar is an integral part of the New England ISO & PCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | the New En             | gland ISO     | & PCA           |         |
|                                                                                                                | 0                  | 0                          |                      |                     | ottp://wwv       | http://www.iso-ne.com/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |               |                 |         |
|                                                                                                                |                    |                            |                      |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                 |         |

| afh Boston        | CO2 (kg)<br>44,009             | NOX (kg)<br>31.73    | SO2 (kg)<br>79.97                | CO (kg) | NMVOC'S (kg) | CH4 (kg) | N2O (kg) | SF6 (kg) | HG (kg) 0.00021      |
|-------------------|--------------------------------|----------------------|----------------------------------|---------|--------------|----------|----------|----------|----------------------|
| afh Baseline      | CO2 (kg)<br>92,254             | NOX (kg)<br>58.83    | SO2 (kg)<br>148.25               | CO (kg) | NMVOC'S (kg) | CH4 (kg) | N2O (kg) | SF6 (kg) | HG (kg)<br>0.00038   |
| afh Boston Credit | CO <sub>2</sub> (kg)<br>48,245 | NOx (kg)<br>27.09746 | SO <sub>2</sub> (kg)<br>68.28559 |         |              |          |          |          | Hg (kg)<br>0.0001752 |

 afh
 local average
 national average

 kWh results
 35,185
 54,604

 Natural Gas results
 25,031
 57,069
 57,069

Annual kWh related tCO2 impact of similar buildings



35,185

50,000

40,000 - 30,000 - 20,000 - 10,000 - 0 - 0

70,000 -

18,979

| ERC % project holder |       | ICBE | Discount | Insurance |
|----------------------|-------|------|----------|-----------|
|                      | 20%   | 2%   | 20%      | 5%        |
| ERC's (t)            |       |      |          | 100%      |
|                      | 33.84 | 2.42 | 29.6     | 2.42      |
| Total                |       |      |          | 48.340233 |

local average

ath

| 1.87                     | 48,245                   | 48,340                  |
|--------------------------|--------------------------|-------------------------|
| GHG rate in kgCO2/ft2/yr | GHG sink rate in tCO2/yr | Total Avoided Emissions |

| When all baseline uses gas for heating, afh's electric demand in KW (Kilowatt or 1000 watt) shows nearly identical in winter, | as for heating                                | , afh's electri              | ic demand in KV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W (Kilowatt or 1 | 000 watt) shows ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | arly identical in      | winter,    |                             |                |                |          |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------|-----------------------------|----------------|----------------|----------|
| ST NUM ST NAME ST SUF STATE ZIP CODE GROSS AREA KW Win 2006 KW Sum 2005 1                                                     | ST SUF                                        | , wileli basel<br>STATE      | ZIP CODE O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SROSS AREA       | THE COOLS WITH ACT, AND ATH COOLS USING ARETTALIVE RECTINIQUES.  ZIP CODE GROSS AREA KW WIN 2006 KW Sum 2005 KW WIN 2005 KW Sum 2004 KW WIN 2004 KW Sum 2003 KW WIN 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sum 2005 KW N          | Win 2005 P | W Sum 2004 KW               | / Win 2004 KW  | Sum 2003 KW    | Win 2003 |
| BOSTON                                                                                                                        | ST                                            | ₽                            | 02125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20000            | 28.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 58.4                   | 32.4       | 54.8                        | 32.4           | 46.8           | 31.2     |
| BROOKLINE                                                                                                                     | ۸                                             | ٩V                           | 02215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22878            | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.89                   | 54.2       | 0.69                        | 58.0           | 76.0           | 49.0     |
| HARCOURT                                                                                                                      | ST                                            | MA                           | 02116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10665            | 21.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 54.0                   | 22.8       | 49.2                        | 28.0           | 50.0           | 24.0     |
| WALNUT                                                                                                                        | ST                                            |                              | 02108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13248            | 28.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.03                   | 23.9       | 40.6                        | 23.7           | 50.5           | 26.4     |
|                                                                                                                               |                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |                             |                |                |          |
|                                                                                                                               |                                               | average                      | gross sf total<br>sf per building                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 66,791<br>16,698 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |                             |                |                |          |
|                                                                                                                               |                                               | averaç<br>avera              | average DMD in KW<br>average DMD per sf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | 33.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 57.8<br>0.0035         | 33.3       | 53.4                        | 35.5<br>0.0021 | 55.8<br>0.0033 | 32.7     |
| av                                                                                                                            | average DMD per sf all buildings over 3 years | . sf all building            | s over 3 years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0026           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |                             |                |                |          |
| target building<br>target building                                                                                            |                                               | avera                        | DMD in KW<br>average DMD per sf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 37.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.6                   | 49.6       |                             |                |                |          |
|                                                                                                                               | average<br>target buildi.                     | DMD per sf c<br>ng DMD relat | average DMD per sf over 3 seasons target building DMD relative to baseline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0016           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |                             |                |                |          |
| 100 West Second                                                                                                               | Street                                        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23,500           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |                             |                |                |          |
| 197                                                                                                                           | i in                                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CT and           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | VI         | About the afh building      | Ďi             |                |          |
|                                                                                                                               |                                               | 1                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            | More about the afh building | guilding       |                |          |
| - FI                                                                                                                          |                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Separation Av. (6) along the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | 4          |                             |                |                |          |
| ALLE STATES                                                                                                                   |                                               | 100 Worl Second St. E.       | The little of th | Visitoatongia    | To describe the control of the contr | Info serve texten into |            |                             |                |                |          |

The target building is a LEED certified, 23,500 square foot multi functional 4 story building, used primarily M-F, 9 to 5pm. The comparison baseline buildings are mainly commercial buildings such as banks, insurance offices etc, with similar occupational patterns.

| Electric demand in KW (Kilowatt or 1000 watt), afh's grid demand is a bit over half the baseline average | Kilowatt or    | 1000 watt)   | , afh's grid dem                              | and is a bit ove | r half the basel | ine average |             |             |             |                |             |
|----------------------------------------------------------------------------------------------------------|----------------|--------------|-----------------------------------------------|------------------|------------------|-------------|-------------|-------------|-------------|----------------|-------------|
| ST_NUM ST_NAME                                                                                           | ST_SUF         | STATE        | ZIP_CODE                                      | GROSS AREA       | KW Win 2006      | KW Sum 2005 | KW Win 2005 | KW Sum 2004 | KW Win 2004 | KW Sum 2003    | KW Win 2003 |
| ARLINGTON                                                                                                | ST             | MA           | 02116                                         | 16738            | 12.8             | 13.2        | 20.0        | 12.0        | 12.0        | meter not read | 11.4        |
| BOSTON                                                                                                   | ST             | MA           | 02125                                         | 20000            | 28.8             | 58.4        | 32.4        | 54.8        |             |                | 31.2        |
| BRADSTON                                                                                                 | ST             | MA           | 02118                                         | 22932            | 170.4            | 86.4        | 172.8       | 57.6        |             |                | 177.6       |
| BROOKLINE                                                                                                | ۸۷             | MA           | 02215                                         | 22878            | 54.0             | 68.0        | 54.2        | 0.69        |             |                | 49.0        |
| HARCOURT                                                                                                 | ST             | MA           | 02116                                         | 10665            | 21.6             | 54.0        | 22.8        | 49.2        | 28.0        | 50.0           | 24.0        |
| WALNUT                                                                                                   | ST             | MA           | 02108                                         | 13248            | 28.0             | 50.8        | 23.9        | 40.6        |             |                | 26.4        |
|                                                                                                          |                | averade s    | gross sf total<br>average sf per building     | 106,461          |                  |             |             |             |             |                |             |
|                                                                                                          |                | average      | average DMD in KW                             |                  | 52.6             | 55.1        | 54.4        | 47.2        | 49.7        | 56.2           | 53.3        |
|                                                                                                          | average        | DMD per      | average DMD per sf per season                 |                  | 0.0030           | 0.0031      | 0.0031      | 0.0027      | 0.0028      | 0.0032         | 0.0030      |
| average                                                                                                  | DMD per sf a   | II buildings | average DMD per sf all buildings over 3 years | 0:0030           |                  |             |             |             |             |                |             |
| target building                                                                                          |                |              | DMD in KW                                     |                  | 37.6             | 25.6        | 49.6        |             |             |                |             |
| target building                                                                                          | average        | DMD per      | average DMD per sf per season                 |                  | 0.0016           | 0.0011      | 0.0021      |             |             |                |             |
|                                                                                                          | average DM     | D per sf ov  | average DMD per sf over 3 seasons             | 0.0016           |                  |             |             |             |             |                |             |
| tar                                                                                                      | get building E | MD relativ   | target building DMD relative to baseline      | 53.94%           |                  |             |             |             |             |                |             |
|                                                                                                          |                |              |                                               |                  |                  |             |             |             |             |                |             |
| 100 West Second                                                                                          | Street         |              |                                               | 23,500           |                  |             |             |             |             |                |             |





About the afh building More about the afh building

DMD (demand) is read every time the meter is read, usually once a month. DMD is continuously recalculated as a rolling average of 15 minute increments. In this baseline, Summer demand is based on the August readings and Winter demand on February readings. A more accurate representation of electrical use would employ kWh totals, the goal for Baseline Year 2.

The target building is a LEED certified, 23,500 square foot multi functional 4 story building, used primarily M-F, 9 to 5pm. The comparison baseline buildings are mainly commercial buildings such as banks, insurance offices etc, with similar occupational patterns.

|                                                                                                           | 3 Total 12 months                                     | 8,287     | 713      | 10,595    | 12,369   |                                           | 7,991                | 0.4366                                 |                                  | 4,500                | 0.1915                                 |                                  |                                                |                 |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------|----------|-----------|----------|-------------------------------------------|----------------------|----------------------------------------|----------------------------------|----------------------|----------------------------------------|----------------------------------|------------------------------------------------|-----------------|
|                                                                                                           | GROSS AREA NG Sum 2005 NG Win 2005 NG Total 12 months | 7,291     | 438      | 8,479     | 7,851    |                                           | 6,015                | 0.3286                                 |                                  | 3,247                | 0.1382                                 |                                  |                                                |                 |
| average                                                                                                   | NG Sum 2005                                           | 966       | 275      | 2,116     | 4,518    |                                           | 1,976                | 0.1080                                 |                                  | 1,253                | 0.0533                                 |                                  |                                                |                 |
| alf the baseline                                                                                          | GROSS AREA                                            | 16738     | 22932    | 22878     | 10665    | 73,213<br>18,303                          |                      |                                        | 0.44                             |                      |                                        | 0.19                             | 43.86%                                         | 23,500          |
| afh uses less than h                                                                                      | ZIP_CODE                                              | 02116     | 02118    | 02215     | 02116    | gross sf total<br>average sf per building | average usage in CCF | average usage in CCF per sf per season | baseline annual CCF usage per sf | average usage in CCF | average usage in CCF per sf per season | target building CCF usage per sf | e relative to baseline                         |                 |
| (1 CCF = 748.05 gallon),                                                                                  | ST_NAME_SUF STATE                                     | MA        | MA       | MA        | MA       | ર્ષ                                       | a                    | average usage in C                     | baseline ann                     | a                    | average usage in C                     | target buildi                    | target building CCF usage relative to baseline |                 |
| ubic Feet                                                                                                 | ST_NA                                                 | ST        | ST       | ¥         | ST       |                                           |                      |                                        |                                  |                      |                                        |                                  |                                                | Street          |
| Vatural Gas usage in 100 Cubic Feet (1 CCF = 748.05 gallon), afh uses less than half the baseline average | ST_NUM ST_NAME                                        | ARLINGTON | BRADSTON | BROOKLINE | HARCOURT |                                           |                      |                                        |                                  | target building      | target building                        |                                  |                                                | 100 West Second |





About the afh building More about the afh building

The target building is a LEED certified, 23,500 square foot multi functional 4 story building, used primarily M-F, 9 to 5pm. The comparison baseline buildings are mainly commercial buildings such as banks, insurance offices etc, with similar occupational patterns.

|                                                                                              | Water 2005   | 5,989     | 10,340   | 12,977 |                  | 9,769               | 0.5538                              | 32,350              | 1.3766                                                              |                                 |                                               |                 |
|----------------------------------------------------------------------------------------------|--------------|-----------|----------|--------|------------------|---------------------|-------------------------------------|---------------------|---------------------------------------------------------------------|---------------------------------|-----------------------------------------------|-----------------|
| verage                                                                                       | GROSS AREA   | 16738     | 22932    | 13248  | 52,918<br>17 639 |                     |                                     |                     | 0.5538                                                              | 1.38                            | 248.57%                                       | 23,500          |
| water usage in cubic Feet (1 CF =7.48 gallon), arn uses more than twice the baseline average | ZIP_CODE     | 02116     | 02118    | 02108  | gross sf total   | average usage in CF | average usage in CF per sf per year | average usage in CF | average usage in CF per sf per year baseline annual CF usage per sf | target building CF usage per sf | ge relative to baseline                       |                 |
| on), arn uses more tna                                                                       | IE_SUF STATE | MA        | MA       | MA     | a a              | i                   | average usage                       |                     | average usage<br>baseline ar                                        | target bui                      | target building CF usage relative to baseline |                 |
| Cr = 7.48 gallo                                                                              | ST_NAME_SUF  | ST        | ST       | ST     |                  |                     |                                     |                     |                                                                     |                                 |                                               | Street          |
| sage in Cubic Feet (1                                                                        | M ST_NAME    | ARLINGTON | BRADSTON | WALNUT |                  |                     |                                     | target building     | target building                                                     |                                 |                                               | 100 West Second |
| water us                                                                                     | ST_NUM       |           |          |        |                  |                     |                                     |                     |                                                                     |                                 |                                               | =               |

About the afh building More about the afh building





The target building is a LEED certified, 23,500 square foot multi functional 4 story building, used primarily M-F, 9 to 5pm. The comparison baseline buildings are mainly commercial buildings such as banks, insurance offices etc, with similar occupational patterns.

